COVIDSMI

The COVID-19 pandemic is having a profound effect on people’s lives. Those with a diagnosis of severe mental health problems may be being disproportionately affected. There are many reports of a lack of access to mental health services and resources for people with a diagnosis of severe mental illness at this time Many of the mental health services that continue to operate during the pandemic have had to make considerable changes to the way they are able to provide mental health care, through limiting contact or reducing the amount of activity and treatment they provide. There are also greater social and economic risks for people with a diagnosis of severe mental illness, many of whom are already at high risk of social isolation and exclusion due to their mental illness. Despite this, most of the attention on the impact of COVID-19 on mental health has been on anxiety and depression in the general population.

This study aims to better understand how the COVID pandemic has changed the treatment that people with a diagnosis of severe mental illness receive, and how this might influence their health outcomes including incidents of self-harm, relapse of their illness, and death.

We aim to do this by comparing access to care and health outcomes of people with a diagnosis of severe mental illness during the pandemic in comparison to previous years. We will also look at whether factors such as age, ethnicity, socioeconomic status, the type of illness and any mental or physical comorbidity, or the type of treatment people are receiving influence these differences in access to care and health outcomes during the pandemic.

Our study aims to provide evidence that could support better application of treatments during pandemics in order to protect the health of those with a diagnosis of severe mental illness in order to reduce further health inequalities and associated economic crisis that pandemics may cause in this group of people.

Measuring the fidelity of Early Intervention in Psychosis interventions using Natural Language Processing to improve the prediction of relapse in First Episode Psychosis

When someone starts experiencing a psychotic illness for the first time they will be treated by an Early Intervention in Psychosis (EIP) team. EIP teams try to intervene as soon as people develop signs or symptoms of psychosis. They treat individuals with a combination of medication (if appropriate) and talking therapy, provide advice and education about the illness to both them and their families, and help them manage their physical health and social needs through a case manager. Randomised trials have shown that EIP treatment is the most effective treatment for first episode psychosis and they are now offered throughout England.

The NHS has set out eight key interventions that EIP teams need to deliver to the people they treat to deliver best-evidenced treatment. These are based on the National Institute for Health and Care Excellence (NICE) guidelines for psychosis. However, many EIP teams are unable to deliver these key interventions to their patients, resulting in poorer care. A further problem is that it is difficult to know who is missing out on these treatments, and where in the country it is happening, because many EIP struggle to accurately report this data to the NHS. This is due to the time-consuming nature of collecting this information for each patient from clinical records.

Electronic health records are now the most common method of recording patient clinical data. Most of this information is recorded in what is called ‘free-text’ unstructured notes. This is information entered in a similar way to traditional paper clinical notes, in full sentences, much like a letter, or diary entry. To collect summary data on the NICE interventions given by an EIP service, or all EIP services, someone would have to manually read each individuals’ notes, which is time consuming and not feasible.

In this project we aim to use computer data science to do this data collection automatically. We will do this by using a technique called natural language processing (NLP). NLP is a way to program a computer to process and analyse free-text notes. We will use NLP to identify the eight recommended NICE interventions. We will then test whether the NLP can identify these interventions accurately enough to be confident in using them by comparing the NLP results to results that we have manually collected.

These NLP algorithms can then be used to better understand local and national provision of EIP treatments.

Patients with psychosis who are parents to children under nineteen

This study aims to find out how many people in Oxford Health NHS Foundation Trust with a diagnosis of psychosis have children. A search on the database will be carried out to find out who has children and who doesn’t, we will then compare these two groups to see how they differ. We might find, for example, that women with psychosis are more likely to have children than men or people who are older.  Identifying how many people with psychosis have children and learning about what makes it more likely for this population to have a child will help us understand this population better. This information will help us think of interventions that are specifically designed for these people with psychosis and their children.

A study estimating long-term rates of relapse, patterns of health outcomes, mental health service use, and moderating factors in patients with psychosis.

In this study, we aim to estimate long term health outcomes & healthcare costs for psychosis patients in CRIS. Using patient characteristics, symptoms and history we will identify the key predictors of health outcomes, such as risk of psychosis relapse. We will also examine the use of mental health services by psychosis patients. The use of services will be costed and we will identify the main predictors of costs. This data will be used to build an economic model to estimate the value for money of new psychosis treatments. The resulting model will help policy makers determine which treatments to implement in the NHS. As a case study, we will apply the model to examine the long-term value of a new virtual reality therapy. The effectiveness of this therapy is currently being evaluated in a 6-month clinical trial.

End-to-end NLP and supervised learning for patient triage

People needing treatment for mental health problems are often first seen by their general practitioners, in hospital Emergency Departments or in educational settings and staff then refer them to mental health services. This network of referral routes converges on community mental health teams who make decisions about suitability for treatment, how urgently to see people and which specialist teams need to be involved. In routine care, all referrals are assessed or ‘triaged’ by a multi-disciplinary team and often require the person is clinically reviewed over one or more contacts to eventually decide on treatment pathways. In 2019 this process cost the NHS £326 million with the referral and triage system often introducing delays to care and this is a common source of frustration for patients and carers.     

Electronic health records contain data from clinical encounters between patients and clinicians, over multiple visits and create a trajectory of the patient’s health and outcomes over time.  However, this information ranges from voluminous or very sparse and triage is time consuming even by expert clinicians. Recent advances in artificial intelligence and natural language processing can identity patterns in a patient’s history and their referral documentation which could help make triage more efficient and expedite access to the “right team”.

Aims: We will build clinical-decision tools to support clinicians in making decisions and triaging referrals in routine clinical practice. The tools will identify and improve access to care for people who have traditionally been excluded from, under represented or poorly served by mental health services ensuring they receive equitable care.

Determining the effectiveness of the early intervention in psychosis access and waiting time standard: A time series analysis

Psychosis is an illness predominantly characterised by the presence of seeing or hearing things that other people cannot see or hear (hallucinations) or believing things that are not true (delusions). These experiences can cause severe distress or a marked change in someone’s behaviour. A first episode of psychosis (FEP) is the first time someone experiences these symptoms that can occur at any age, but the condition is most common in late adolescence and early adulthood.

In 2016 NHS England introduced the first mental health-related waiting time standards. This standard required that from the 1st April 2016, at least half of all people experiencing a FEP must be assessed by specialist mental health services and begin a National Institute for Clinical Excellence (NICE) approved package of care within 14 days of their referral to services.

The reason for this standard is that there is evidence that a longer duration of untreated psychosis (DUP) is associated with poorer short-and-long term outcomes. The ultimate aim of the standard is therefore to improve pathways into psychosis treatment, reducing the time it takes to receive treatment and providing best-evidence-based care right at the first point of need. By intervening early and comprehensively, the goal is to improving short-term outcomes and reducing the need for future long-term care.

Our study aims to use real-world evidence to evaluate the impact of the waiting time standard, both on individuals’ outcomes and service utilisation. We will do this by conducting a time-series analysis. Time-series analyses measure changes over time – before and after an intervention or event – and are useful to evaluate the success of an intervention or treatment when the use of randomised trials are not possible. We will use time series analysis to determine whether the introduction of the early intervention waiting time standard reduced the time individuals waited to receive assessment and treatment. We will also measure whether it reduced the number of early psychiatric hospitalisations that often occur in this group, reduced use of the Mental Health Act, increased how often people were seen.

A study investigating the implementation of NICE recommended psychological interventions for people with severe mental illness following a psychiatric inpatient admission

The National Institute for Health and Care Excellence (NICE) produces guidelines which outline recommendations for the treatment of different disorders, including mental illness. Severe mental illnesses include psychosis, bipolar disorder and personality disorders. Previous research has shown that people who have a diagnosis of psychosis rarely receive the psychological treatments which are recommended in the NICE guidelines. Research has also shown that you could be more likely to receive these treatments if you have particular characteristics, for example if you are from a white ethnic background. Most of the people who are admitted into psychiatric hospitals have a diagnosis which can be described as a severe mental illness. The period of time following a hospital admission can be very stressful and NICE recommend that psychological therapy is discussed as part of the discharge plan. This study aims to see how many people with a severe mental illness receive a NICE recommended therapy in the year after they have been discharged from hospital and whether this is more likely if they have a particular diagnosis or if they have certain characteristics.